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Michael Hopka, Devesh Upadhyay, Michiel Van Nieuwstadt, and Gábor Orosz

Abstract— An on-board traffic prediction algorithm is pro-
posed for connected vehicles traveling on highways. The pre-
diction is based on data received from other connected vehicles
ahead in the traffic stream, leveraging the fact that a vehicle will
enter the traffic that other vehicles ahead have already met. Our
method includes traffic state estimation with Kalman filter and
prediction via traffic flow models describing the propagation of
congestion waves. The end result is an individualized speed
preview in real time up to about half a minute for the
connected vehicle executing prediction. Most importantly, the
traffic prediction was successfully implemented on board of
a real vehicle and predictions were tested in real traffic with
experiments involving connected human-driven vehicles.

I. INTRODUCTION AND MAIN CONCEPT

Traffic congestion is one of the major factors that re-
duces the efficiency of road transportation. To overcome
congestions, a plethora of methods have been proposed in
the literature for traffic control, vehicle control in congested
traffic and the integration thereof. Vehicle control may signif-
icantly benefit from speed previews and predictions about the
upcoming traffic. Previews allow more efficient operation of
on-board systems, such as after treatment and engine control,
and may improve the energy efficiency of driving [1], [2].
Hence, this paper focuses on traffic predictions that vehicles
may use on board in real time to optimize their operation.

Traffic estimation and prediction have long been of interest
in the literature. Initially, traffic estimation relied on Eulerian
data from road locations, for example, by counting vehicles
via loop detectors or cameras [3], [4], [5]. The underlying
traffic models are Eulerian, formulated in road-fixed frame.
The availability of GPS-capable devices made vehicle trajec-
tory data also widely accessible [6], [7]. These Lagrangian
data were fused into Eulerian models for traffic estimation.
Notably, [8], [9], [10] used Kalman filtering to achieve
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Fig. 1. (a) The concept of connectivity-based on-board traffic prediction
where an ego vehicle (blue) predicts its future motion based on data received
from a lead vehicle (green) via vehicle-to-vehicle (V2V) connectivity. (b)-
(c) Speed previews (black) and the ego’s future speed (purple) at two
different time moments. (d) Multiple lead vehicles providing data for traffic
prediction.

this, which inspired our work. Recently, trajectory data of
automated [11] and connected [12] vehicles were used for
traffic reconstruction by Eulerian models. Lagrangian models
formulated in the vehicle frame have also proved to be useful
for traffic estimation with trajectory data [13], [14], while
fusion of different kinds of data also exists [15], [16], [17].

To obtain traffic predictions, routing apps (such as Google
Maps, Here Maps, TomTom and Waze) are the most popular
tools. While forecasts from these providers are extremely
useful, they are road location specific as opposed to vehicle
specific, and they are typically delayed with a few minutes
due to processing and update latencies which prohibit their
use for real-time control. Vehicle control could enjoy further
benefits if predictions were tailored to the needs of the
controlled vehicle and were made on board in real time.



A potential technology to provide traffic data on board in
real time (with a delay in the time scale of 0.1 s) is vehicle-
to-vehicle (V2V) or, in general, vehicle-to-everything (V2X)
connectivity. This led to the concept of connectivity-based
on-board traffic prediction in our previous work [18]. The
concept is shown in Fig. 1(a). A vehicle whose future is of
interest, called ego vehicle, is connected to another vehicle
traveling ahead, called lead vehicle. Connectivity allows the
lead to share its position and speed with the ego. As the ego
meets the traffic the lead has already passed, we can assert
that the ego’s future motion can be predicted using data from
the lead. This statement is valid for traffic jams and slow
moving traffic under certain simplifying assumptions.

The envisioned speed previews are illustrated by Fig. 1(b)-
(c) for two different time moments. The trajectories of the
lead and ego vehicles (green and blue) up to present time
(vertical line) are used to predict the ego’s future trajectory
(black). Ideally, the prediction — which requires not only
instantaneous speed and position, but historical data — cap-
tures the ego vehicle’s future motion (purple). Connectivity
from multiple lead vehicles, as illustrated in Fig. 1(d), can
improve the achievable prediction horizon and accuracy.

Building on this concept, this work makes two contribu-
tions. First, we propose a prediction method, wherein traffic
state is estimated with Kalman filter. In [8], [9], [10] Kalman
filter was used to estimate velocity fields by Eulerian models,
whereas [13], [14] reconstructed trajectories for pairs of
subsequent vehicles. We use Kalman filtering to estimate
trajectories between two distant connected vehicles (lead and
ego). Our second – and most important – contribution is
implementing traffic prediction on connected human-driven
vehicles in real highway experiments. For the first time, we
provided individualized speed previews to an ego vehicle in
real time, on board, in the time horizon of a minute.

The paper is outlined as follows. Section II shows ex-
periments with connected human-driven vehicles on real
highways, where trajectory data were collected and predic-
tions were tested. Section III explains the prediction method.
Section IV shows the outcome of traffic prediction using
experimental data, with discussions about prediction horizon
and accuracy. Section V concludes our work.

II. DATA COLLECTION

In our experiments, three passenger cars were driven on
real highways to collect data and make on-board traffic
predictions; see Fig. 1(d). The cars were equipped by V2X
communication devices as shown in Fig. 2, which transmitted
the GPS position and speed of vehicles every 0.1 s via basic
safety messages (BSMs). Computers were used to record
these data and tablets were connected wireless to the V2X
devices so that passengers could monitor the positions of
connected cars. The on-board prediction was implemented
on the third vehicle, while all three cars were driven naturally
without using the information from V2X units or the traffic
prediction. The route of the experiment is shown in Fig. 3(a).

Our experimental setup enabled data collection at 10 Hz
sampling frequency. Depending on the distance of the vehi-

Fig. 2. Vehicle equipped with V2X communication device connected to
an upper level computer for data collection and traffic prediction.

cles and other objects between them, the communication was
sometimes interrupted and data packets were lost. In Fig. 3(b)
the number of data packets sent (red) by the two lead vehicles
and received (green) by the ego vehicle are shown against the
distance between these vehicles. The corresponding packet
delivery ratio (black) drops dramatically at about 250-300 m
distance. Each vehicle recorded its own outgoing data pack-
ets too, which enabled us to overlap and post-process the
data after the experiment despite packet losses. Our traffic
prediction algorithm is validated via this aggregated dataset,
while the technological limits of the V2X connectivity can
be evaluated based on the packet delivery.

In Fig. 3(c)-(e), the recorded positions, speeds and dis-
tances of the three vehicles are plotted (with the color
code of Fig. 1(d)) for 8 minutes of experiment in which
heavy traffic congestion occurred. We use this dataset to
test our traffic prediction algorithm. Continuous segments
of the curves indicate uninterrupted communication between
the ego and lead vehicles, whereas dashed segments relate to
interrupted/poor communication. In Fig. 3(e), the distances
between the ego and lead vehicles are plotted, showcasing
another aspect of the distance over which packet losses occur.
Below 250 m distance, stable connectivity was realized.

Observe in Fig. 3(c) that the ego vehicle overtook one of
the lead vehicles at about 40 seconds (blue curve intersects
the red one) since this leading vehicle was driven on a differ-
ent lane of the highway. This explains why speed fluctuations
in Fig. 3(d) do not correlate for all vehicles (red curve shows
different behavior than others). In our experiment, drivers
chose lanes based on their individual decisions. Since V2V
packets did not contain lane information, we selected the
useful lead vehicle data during post-processing intuitively, to
avoid the use of uncorrelated data in our traffic prediction.

III. TRAFFIC PREDICTION METHOD

We separate the on-board traffic prediction problem into
two steps: (i) traffic estimation and (ii) traffic prediction.
Traffic estimation uses historical data about the lead and ego
vehicles’ trajectory to estimate the current state of traffic,
including the number of vehicles between lead and ego and
their positions and speeds. This relies on a nominal traffic
model and Kalman filtering. The traffic state estimate is then



Fig. 3. (a) The route of the on-board traffic prediction experiment. (b)
The number of data packets sent (red) and delivered (green) and the packet
delivery ratio of V2V connectivity (black). (c)-(e) The position, speed and
distance of the vehicles in the experiment with colors according to Fig. 1(d).

used as initial condition for traffic prediction, wherein the
future motion of the ego vehicle (and the vehicles between
lead and ego) is predicted based on a nominal model.

The framework is explained for the scenario in Fig. 1(a),
where N vehicles follow the lead vehicle with the ego at
the end. Vehicles are indexed from 0 to N starting at the
ego with indices increasing in the direction of motion. Time
is measured so that t = 0 when the prediction is made, i.e.,
traffic estimation is over t ≤ 0 while prediction is for t ≥ 0.

A. Traffic Estimation

We use the elementary car-following model of Newell [19]
as nominal model for traffic estimation. Newell’s model as-
sumes that each vehicle copies the motion of its predecessor
while keeping a time gap tg and a standstill distance dst.
The position X(n, t) of vehicle n as a function of time t is
a copy of the position X(n + 1, t) of the preceding vehicle
n + 1, shifted in time by tg and in space by dst:

X(n, t) = X(n + 1, t− tg)− dst. (1)

By introducing the deviation s(n, t) = X(n, t)− ndst from
the standstill spacing, we transform out the spatial shift dst:

s(n, t) = s(n + 1, t− tg). (2)

Similarly, the speed v(n, t) of vehicle n is also a shifted
copy of the speed v(n + 1, t):

v(n, t) = v(n + 1, t− tg), (3)

according to the time derivative of (1).
Newell’s model captures the propagation of congestion

waves upstream along the highway, where the wave speed
is w = dst/tg. This relates to models that describe wave
propagation by considering the traffic flow as continuum. In
fact, (2) can also be written as s(n, t) = s(0, t + ntg), that
is a solution to the linear Lighthill-Whitham-Richards model
written in the Lagrangian (vehicle) frame [18], [20]:

∂ts(n, t) = ∂ns(n, t)/tg. (4)

As the solution to this continuum model exists for non-
integer vehicle indices as well, we construct the following
continuum equivalent of Newell’s model (2)-(3):

s(n, t) = s(n + ∆n, t−∆t),

v(n, t) = v(n + ∆n, t−∆t),
(5)

where ∆n > 0 is a not necessarily integer shift in vehicle
index while ∆t = tg∆n is the associated time shift. This
continuum extension helps estimating the number of vehicles
between lead and ego without restriction to integer numbers.

We perform traffic estimation in discrete time over
the past t ∈ [−Tp, 0] by fixing ∆t and using tk = k∆t,
k ∈ {−Kp . . . , 0}, Tp = Kp∆t with the corresponding dis-
crete vehicle indices n` = `∆n, ` ∈ {0, . . . , L}, N = L∆n.
The discretization of (5) leads to

s`k+1 = s`+1
k ,

v`k+1 = v`+1
k .

(6)

With the state defined as x`
k =

[
s`k v`k

]> ∈ R2 we obtain

x`
k+1 = a`x`

k + b`x`+1
k , (7)

where a` = 0 and b` = I are 2× 2 zero and identity matri-
ces, respectively. Note that a wide class of linear(ized) car-
following and Lagrangian continuum models can be written
in the discretized form (7) with the appropriate coefficient
matrices. Finally, considering ` ∈ {0, . . . , L} we get
xL−1
k+1

xL−2
k+1
...

x0
k+1

 =


aL−1

bL−2 aL−2

. . . . . .
b0 a0



xL−1
k

xL−2
k
...
x0
k

+


bL−1

0
...
0

xL
k ,

(8)
where the coefficient matrix is lower bi-diagonal.

Here xL
k =

[
sLk vLk

]>
=
[
X lead

k −Ndst vleadk

]>
con-

tains the lead vehicle’s position X lead
k and speed vleadk data,

which are directly available from V2V communication. We
consider the traffic estimation problem with input uk = xL

k .
We intend to capture the position Xego

k and speed vegok



of the ego vehicle with our model, thus we consider the
state x0

k of the ego as output yk = x0
k. The states x`

k of
all follower vehicles ` ∈ {0, . . . , L− 1} constitute the state
Xk ∈ R2(L+1) of the traffic flow. Thus, the linear system
model becomes

Xk+1 = AXk + Buk + ξ, ξ ∼ N (0,Q),

yk = CXk + η, η ∼ N (0,R),
(9)

where A and B are the coefficient matrices in (8), while
C is a matrix whose last column block is I and all other
column blocks are 0. Furthermore, we assume the system is
subject to Gaussian process noise ξ and observation noise η
with zero mean and covariance Q and R, respectively

Finally, one needs the number L of trajectories between
lead an ego, associated with N = L∆n (not necessarily
integer) number of vehicles. We estimate this as follows:

L =
X lead
−Kp
−Xego

−Kp

(vlead−Kp
+ w)∆t

, (10)

rounded to integer. Here the distance X lead
−Kp
−Xego

−Kp
of

the lead and ego vehicles at the start of traffic estimation
is divided by (vlead−Kp

+ w) to get the time it takes for a
congestion wave to travel with speed w from the lead to the
ego (if the lead travels at constant speed vlead−Kp

). This yields
the total time shift between lead and ego, and division by the
time shift ∆t between two subsequent trajectories gives the
number L of trajectories. Inferring the number of vehicles
between lead and ego with more sophisticated methods and
as a function of time is a potential future research direction.

We use a standard Kalman filter to estimate the state X,
which consists of two steps. The first step is prediction that
obtains a priori distribution and the second step is correction
which gets a posteriori distribution. The prediction step is

X̂k|k−1 = AX̂k−1|k−1 + Buk−1,

Pk|k−1 = APk−1|k−1A
> + Q,

(11)

where subscript k|k − 1 shows that the prediction is for
time k based on estimations up to time k − 1, and P is
the covariance of the state estimate X̂. This prediction is
corrected based on current measurement ym

k . Namely, the
difference of the measured output ym

k =
[
Xego

k vegok

]>
and

the output CX̂k|k−1 produced by the nominal model is fed
back using an optimally chosen Kalman gain Mk:

Mk = Pk|k−1C
>(CPk|k−1C

> + R)−1,

X̂k|k = X̂k|k−1 + Mk(ym
k −CX̂k|k−1),

Pk|k = (I−MkC)Pk|k−1.

(12)

These expressions can be computed efficiently given the
structure of C (since all but one blocks of C are zero).

B. Traffic Prediction

The traffic prediction process simulates the nominal model
further into the future t ∈ [0, Tf ] by evaluating (11) for
k ∈ {0, . . . ,Kf}, Tf = Kf∆t with initial condition X̂0.
Since no data are available for the future, the correction

steps (12) are no longer carried out. The covariance P is
still calculated to evaluate the uncertainty of predictions.

The lead vehicle’s past motion affects the ego vehi-
cle’s future motion up to a horizon t ∈ [0, Th], that is,
k ∈ {0, . . . ,Kh}, Th = Kh∆t. This horizon is determined
by the time over which the congestion wave of speed w
propagates from the lead to the ego: Kh is the maximum
value of k that satisfies

X0
k ≤ XL

0 − wk∆t, (13)

and it depends on the state of traffic. To perform simulations,
we used constant speed future motion for the lead vehicle
as input uk, and we limited the ego’s predicted trajectory
to the horizon k ≤ Kh. Beyond this horizon (k > Kh) we
disregarded predictions due to the bias caused by the constant
speed assumption for the lead vehicle.

In the simulations we used dst = 10 m, tg = 1.67 s (that
yield w = 6 m/s) and ∆t = 0.1 s. The duration of the traf-
fic estimation was set to Tp = (X lead

0 −Xego
0 )/(vlead0 + w)

(rounded to integer multiples of ∆t) that is the time shift
between lead and ego at the moment of prediction; cf. (10).
This keeps the amount of simulations reasonably low for
real-time implementation. We forecasted over the maximum
achievable horizon Tf = Th. We specified the initial condi-
tion X̂−Kp|−Kp

for (11) by linearly interpolating L number
of states between the lead and ego vehicles’ data. We set the
initial covariance P−Kp|−Kp

= 0. We chose the elements of
Q and R such that Qij = Rij = 1 if i, j are odd (covariance
between two position terms), Qij = Rij = 0.1 if i, j are even
(covariance between two speed terms) and Qij = Rij = 0
otherwise (covariance between a position and a speed term).

IV. APPLICATION AND RESULTS

We implemented the proposed traffic prediction algorithm
on a vehicle and tested it in real traffic during the congestion
of Fig. 3. The results below were obtained via the codes that
were run in the experiment (apart from minor modifications).
While the experiment included three vehicles, for simplicity
we present predictions for a single lead-ego pair (green and
blue in Figs. 1-3). We remark, however, that data from
multiple lead vehicles may allow predictions for multiple
lanes, or in case of a single lane they can be leveraged by
providing multiple speed previews (one per lead vehicle) or
a single combined prediction. A possible combination is to
take the farthest lead vehicle’s data as input uk and include
the other lead vehicles’ data in the observation yk when
using the Kalman filter. Although this was also implemented,
we omit further discussions on multiple lead vehicles.

Fig. 4(a)-(b) show the prediction at a selected time mo-
ment (vertical line at t = 0). Over t ≤ 0 traffic estimation
was conducted using historical data (green and blue). This
resulted in the estimated trajectories s`k and v`k (gray). We
plotted only those trajectories whose vehicle index n` is
close to integer. The estimated state at t = 0 was used
as initial condition for traffic prediction over t ≥ 0, which
produced the ego’s predicted trajectory (see the expectation
in black). The uncertainty of the prediction is indicated by



Fig. 4. (a)-(b) Illustration of traffic estimation and prediction at a selected
time moment with position and speed plots. (c) Example of five predictions
over a two minute time frame. Note that the prediction horizon changes
over time as the distance and speeds of the vehicles change; cf. (13).

shading for one standard deviation (68% credible interval).
This was obtained from those diagonal elements of Pk|k that
correspond to the ego’s state x0

k.
Fig. 4(c) illustrates how the prediction is repeated over

time: at each time moment (vertical lines) a new prediction
is plotted. While this example shows predictions at every 25
seconds, the algorithm is able to forecast with a higher update
rate (within about a second including reading the data and
plotting). The predictions (black) match the ego vehicle’s
actual trajectory (blue) qualitatively, and the quantitative
accuracy is calculated below.

We evaluated the accuracy offline after the experiment, by
including the data that were recorded by the lead vehicle
but were unavailable to the ego due to packet losses. This
separates the technology-related effects of imperfect commu-
nication from the methodology-related effects of prediction
inaccuracy. Fig. 5 indicates the prediction error. A prediction
was made (like in Fig. 4) at every second and the absolute
error between prediction (black) and ground truth (purple)
was calculated for each point along the horizon. This yields
the error as a function of prediction time and horizon. The
error of the Kalman filter algorithm is shown in Fig. 5(a). The
color tells the magnitude of the error while the envelope of
the colored area shows the achievable horizon found by (13).

The prediction horizon depends on the traffic state, includ-
ing the distance D of lead and ego and the speed v of traffic;
its rough estimate is Th ≈ D/(v + w). The horizon reached
20 seconds in this particular traffic jam. In general, the hori-
zon is longer if the ego obtains data from farther ahead. Thus,
the range of V2V connectivity (shown by Fig. 3(b)) limits the

achievable horizon. By driving through multiple congestions,
we observed that the method can provide predictions for up
to 40-60 seconds with current V2V technology. The range
and horizon may be extended by other means of connectivity,
such as communication with the infrastructure.

The horizon has trade-off with accuracy: predictions far-
ther into the future tend to be less accurate. This is shown by
Fig. 5(a) where the color gets brighter towards top. The inset
highlights this by zooming into the first 90 predictions. Here
the ego vehicle reached the traffic jam and had a significant
slowdown; cf. Fig. 3(d). Such large changes in the speed are
especially important to predict and can potentially lead to
high prediction errors. Using the data from connectivity, the
Kalman filter algorithm manages to make predictions with
good accuracy over most of the time and horizon.

Fig. 5(b) compares the proposed method to constant speed
prediction over the same horizon. As this baseline does not
use the lead vehicle’s data from connectivity, it fails to
predict the slowdown; see the high error in the inset. For low
speeds and short horizons, however, it may achieve low error.
Fig. 5(c) shows the case where the lead vehicle’s data are
used but state estimation relies on the nominal model without
Kalman filter. Since it is no longer ensured that the estimated
state stays close to the historical data, there is a discontinuity
between the last available speed data and the speed predicted
with the simple model (6). Thus, the prediction error is
nonzero even at the smallest (zero) horizon.

We also evaluated the root mean square (RMS) prediction
error. In Fig. 5(d), the RMS is calculated by taking the
mean over the available horizon for each prediction time. The
plot shows that connectivity helps us reduce the prediction
error (green and blue) compared to constant speed prediction
(gray), and the Kalman filter (green) further improves the
results. The difference between the three methods is sig-
nificant in the beginning (during a major slowdown) and
at the end (during a speed up). In Fig. 5(e), the mean in
the RMS is calculated over time and the result is plotted
against the prediction horizon. As the horizon increases,
the prediction error increases for all methods. The constant
speed prediction (gray) has rapid error growth and may
not be satisfactory for long horizons, while the information
from connectivity reduces the error significantly (green and
blue). Without Kalman filter (blue), the error is nonzero
even at zero horizon, while the Kalman filter (green) ensures
continuous speed preview and low errors, even when applied
with a simple traffic flow model like (6).

V. CONCLUSIONS

We have proposed a traffic prediction method that allows
connected vehicles on highways to forecast their future
trajectories based on the motion of other connected vehicles
ahead. We have decomposed the problem into traffic esti-
mation using historical data and traffic prediction about the
future, both relying on traffic flow models. The traffic state
estimation was supported by Kalman filter. The prediction
method has been implemented on a physical vehicle and on-
board real-time predictions have been tested in real traffic via



Fig. 5. (a)-(c) The absolute prediction error for various prediction times and horizons with three different methods: (a) using the lead vehicle data from
connectivity with Kalman filter, (b) constant speed prediction, and (c) prediction without Kalman filter. The insets zoom into the first 90 predictions when
there was a major slowdown upon reaching the traffic jam. (d)-(e) The RMS prediction error over the horizon and the prediction time.

experiments with connected human-driven vehicles. Future
research directions include integrating our method with more
sophisticated traffic models and supplementing it with data
from vehicle-to-infrastructure communication.
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